Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Parasitol ; 106(4): 490-505, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726421

RESUMO

To analyze the response of the snail Physella acuta to Echinostoma paraensei, a compatible digenetic trematode, Illumina RNA-seq data were collected from snails with early infection (5 snails at 2 days post-exposure [DPE]) and established infection (4 snails, 8 DPE), and 7 control (unexposed) snails. A reference transcriptome (325,563 transcripts, including 98% of eukaryotic universal single-copy orthologs; BUSCO) and a draft P. acuta genome (employing available genomic Illumina reads; 799,945 scaffolds, includes 88% BUSCO genes) were assembled to guide RNA-seq analyses. Parasite exposure of P. acuta led to 10,195 differentially expressed (DE) genes at 2 DPE and 8,876 DE genes at 8 DPE with only 18% of up-regulated and 22% of down-regulated sequences shared between these time points. Gene ontology (GO) analysis yielded functional annotation of only 1.2% of DE genes but did not indicate major changes in biological activities of P. acuta between 2 and 8 DPE. Increased insights were achieved by analysis of expression profiles of 460 immune-relevant DE transcripts, identified by BLAST and InterProScan. Physella acuta has expanded gene families that encode immune-relevant domains, including CD109/TEP, GTPase IMAP, Limulus agglutination factor (dermatopontin), FReD (≥82 sequences with fibrinogen-related domains), and transcripts that combine C-type lectin (C-LECT) and C1q domains, novel among metazoa. Notably, P. acuta expressed sequences from these immune gene families at all time points, but the assemblages of unique transcripts from particular immune gene families differed between 2 and 8 DPE. The shift in profiles of DE immune genes, from early exposure to parasite establishment, suggests that compatible P. acuta initially respond to infection but switch to express immune genes that likely are less effective against E. paraensei but counter other types of (opportunistic) pathogens and parasites. We propose that the latter expression profile is part of an extended phenotype of E. paraensei, imposed upon P. acuta through parasite manipulation of the host, following successful parasite establishment in the snail after 2 DPE.


Assuntos
Echinostoma/fisiologia , Caramujos/parasitologia , Animais , Sequência de Bases , Regulação para Baixo , Echinostoma/classificação , Água Doce , Expressão Gênica , Ontologia Genética , Genoma , Interações Hospedeiro-Parasita , Caramujos/genética , Caramujos/imunologia , Transcriptoma , Regulação para Cima
2.
Mol Immunol ; 101: 108-119, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29920433

RESUMO

The freshwater snail Physella acuta was selected to expand the perspective of comparative snail immunology. Analysis of Physella acuta, belonging to the Physidae, taxonomic sister family to Planorbidae, affords family-level comparison of immune features characterized from Biomphalaria glabrata, the model snail often used to interpret general gastropod immunity. To capture constitutive and induced immune sequences, transcriptomes of an individual Physella acuta snail, 12 h post injection with bacteria (Gram -/+) and one sham-exposed snail were recorded with 454 pyrosequencing. Assembly yielded a combined reference transcriptome containing 24,288 transcripts. Additionally, genomic Illumina reads were obtained (∼15-fold coverage). Recovery of transcripts for two macin-like antimicrobial peptides (AMPs), 12 aplysianins, four LBP/BPIs and three physalysins indicated that Physella acuta shares a similar organization of antimicrobial defenses with Biomphalaria glabrata, contrasting a modest AMP arsenal with a diverse set of antimicrobial proteins. The lack of predicted transmembrane domains in all seven Physella acuta PGRP transcripts supports the notion that gastropods do not employ cell-bound PGRP receptors, different from ecdysozoan invertebrates yet similar to mammals (vertebrate deuterostomes). The well-documented sequence diversification by Biomphalaria glabrata FREPs (immune lectins comprising immunoglobulin superfamily domains and fibrinogen domains), resulting from somatic mutations of a large FREP gene family is hypothesized to be unique to Planorbidae; Physella acuta revealed just two bonafide FREP genes and these were not diversified. Furthermore, the flatworm parasite Echinostoma paraensei, confirmed here to infect both snail species, did not evoke from Physella acuta the abundant expression of FREP proteins at 2, 4 and 8 days post exposure that was previously observed from Biomphalaria glabrata. The Physella acuta reference transcriptome also revealed 24 unique transcripts encoding proteins consisting of a single fibrinogen-related domain (FReDs), with a short N-terminal sequence encoding either a signal peptide, transmembrane domain or no predicted features. The Physella acuta FReDs are candidate immune genes based on implication of similar sequences in immunity of bivalve molluscs. Overall, comparative analysis of snails of sister families elucidated the potential for taxon-specific immune features and investigation of strategically selected species will provide a more comprehensive view of gastropod immunity.


Assuntos
Caramujos/imunologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Sequência Consenso , Fibrinogênio/química , Peptídeos/química , Filogenia , Domínios Proteicos , Caramujos/genética , Caramujos/parasitologia , Transcriptoma/genética , Trematódeos/fisiologia
3.
Mitochondrial DNA B Resour ; 3(2): 972-973, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33474384

RESUMO

The complete mitochondrial genome of a freshwater planorbid snail, Planorbella duryi (Mollusca, Gastropoda) was recovered from de novo assembly of genomic sequences generated with the Illumina NextSeq500 platform. The P. duryi mitogenome (14,217 base pairs) is AT rich (72.69%) and comprises 13 protein-coding genes, two ribosomal subunit genes, and 22 transfer RNAs. The gene order is identical to that of Biomphalaria glabrata and other snail species in the family Planorbidae. This is the first full characterization of a mitochondrial genome of the genus Planorbella.

4.
Dev Comp Immunol ; 75: 3-15, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28322934

RESUMO

Comparative immunology, studying both vertebrates and invertebrates, provided the earliest descriptions of phagocytosis as a general immune mechanism. However, the large scale of animal diversity challenges all-inclusive investigations and the field of immunology has developed by mostly emphasizing study of a few vertebrate species. In addressing the lack of comprehensive understanding of animal immunity, especially that of invertebrates, comparative immunology helps toward management of invertebrates that are food sources, agricultural pests, pathogens, or transmit diseases, and helps interpret the evolution of animal immunity. Initial studies showed that the Mollusca (second largest animal phylum), and invertebrates in general, possess innate defenses but lack the lymphocytic immune system that characterizes vertebrate immunology. Recognizing the reality of both common and taxon-specific immune features, and applying up-to-date cell and molecular research capabilities, in-depth studies of a select number of bivalve and gastropod species continue to reveal novel aspects of molluscan immunity. The genomics era heralded a new stage of comparative immunology; large-scale efforts yielded an initial set of full molluscan genome sequences that is available for analyses of full complements of immune genes and regulatory sequences. Next-generation sequencing (NGS), due to lower cost and effort required, allows individual researchers to generate large sequence datasets for growing numbers of molluscs. RNAseq provides expression profiles that enable discovery of immune genes and genome sequences reveal distribution and diversity of immune factors across molluscan phylogeny. Although computational de novo sequence assembly will benefit from continued development and automated annotation may require some experimental validation, NGS is a powerful tool for comparative immunology, especially increasing coverage of the extensive molluscan diversity. To date, immunogenomics revealed new levels of complexity of molluscan defense by indicating sequence heterogeneity in individual snails and bivalves, and members of expanded immune gene families are expressed differentially to generate pathogen-specific defense responses.


Assuntos
Imunidade Inata , Imunogenética , Moluscos/genética , Moluscos/imunologia , Fisiologia Comparada , Animais , Evolução Biológica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Fagocitose , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...